Benha University
Faculty of Engineering Shoubra

Electrical Circuits (2)
Electrical Eng. Dept. $1^{\text {st }}$ year communication April 2017

Sheet (6)... Magnetically Coupled Circuits

1. When a coil 1 of magnetically coupled pair has a current of 5 A , the resulting fluxes Φ_{11} and Φ_{12} are 0.2 mwb and 0.4 mwb respectively. If $N 1=500, N 2=1500$ find L_{1}, L_{2}, M and K.
2. For circuits in fig1 and 2, find the equivalent inductance across terminals a, b.

Figure 1

Figure 2
3. Calculate mutual inductance of two coils of self-inductance 100 mH and 200 mH which are connected in series to yield a total inductance of 146 mH .
4. Three similar coils are wound on along common core in such way that the voltage of mutual inductance between each set of coils is positive. The self-inductance of each coil is 0.2 H . The effective inductance of first two in series is 0.6 H , and of all the three in series is 1 H . When the terminals of the first coil are interchanged, the effective inductance of the three coils in series becomes 0.5 H . Determine the coefficient of coupling between each set of coils.

Benha University
Faculty of Engineering Shoubra

Electrical Circuits (2)

Electrical Eng. Dept. $1^{\text {st }}$ year communication April 2017
5. In the circuit shown in fig. 3, determine V1, V2 and V3.

Figure 3
6. In the circuit shown in fig. $4 \mathrm{~L} 2=2 \mathrm{H}$. The inductance at the terminals 1,2 is 3 H when the terminals 3,4 are opened and 1 H when shorted. Determine the coefficient of coupled circuit.

7. Find the ratio of I1 and I2 for the circuit shown in fig. 5 using the dotted coupled circuit shown, and then draw the conductively coupled equivalent circuit.

Good Luck

